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Abstract—The purpose of this study was to demonstrate the use 

of the self-organizing maps (SOM) method for visualization, 

modelling and comparison of trunk neuromuscular synergies 

during perturbed sitting. Thirteen participants were perturbed at 

the level of the sternum, in eight directions during sitting. 

Electromyographic (EMG) responses of ten trunk muscles 

involved in postural control were recorded. The SOM was used to 

encode the EMG responses on a two-dimensional (2-D) projection 

(i.e., visualization). The result contains similar patterns mapped 

close together on the plot therefore forming clusters of data. Such 

visualization of ten EMG responses, following eight directional 

perturbations, allows for comparisons of direction-dependent 

postural synergies. Direction-dependent neuromuscular response 

models for each muscle were then constructed from the SOM 

visualization. The results demonstrated that the SOM was able to 

encode neuromuscular responses, and the SOM visualization 

showed direction-dependent differences in the postural synergies. 

Moreover, each muscle was modelled using the SOM-based 

method, and derived models showed that all muscles, except for 

one, produced a Gaussian fit for direction-dependent responses. 

Overall, SOM analysis offers a reverse engineering method for 

exploration and comparison of complex neuromuscular systems, 

which can describe postural synergies at a glance. 

 
Index Terms—Balance, electromyography, muscle synergy, 

perturbation, self-organizing map, sitting, visualization. 
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I. INTRODUCTION 

RUNK stability is responsible for maintaining upright 

posture of the spine during standing and sitting. Trunk 

stability relies on complex synergistic muscle activations, 

which play an important role during standing and sitting 

balance control. Previous analysis of trunk stability have 

examined over 40 muscles of the ‘spine system’ [1], which are 

difficult to evaluate and interpret as a collective system using 

standard analysis methods. Consequently, there is a need to 

develop a technique which would allow one to quickly and 

intuitively analyze synergistic activity of many muscles that act 

in concert and to derive principles of their synergistic activity 

from the individual electromyography (EMG) recordings of 

the muscles of interest during a particular neuromuscular 

activity [2]. 

In postural control, gross movements that require a number 

of interdependent and simultaneous muscle responses are 

known as postural synergies. Postural synergies are control 

signals for groups of muscles that work together to assure 

stability of a certain joint or a body segment [3]. It is known 

that tonic muscle activation contributes to stability of the trunk 

during sitting balance [4]. It is established that tonic activation 

of the trunk muscles contributes to the stability of the trunk 

during sitting and standing balance [4]. It has also been 

established that phasic, feedback-driven, trunk muscle 

responses help maintain trunk stability during perturbed sitting 

[4], [5]. In this study, we analyzed postural synergy and the 

perturbation-induced phasic response of the trunk muscles that 

work collaboratively to ensure stability of the trunk during 

perturbed sitting. 

The concept of synergy is related to the understanding of 

how the central nervous system (CNS) activates multiple 

muscles in order to perform complex movements [3]. Muscle 

synergies are analyzed by examining correlations between 

pairs of muscles [6]. However, correlation analysis is not 

sufficient when investigating tasks that involve more complex 

synergies [3]. Statistical methods using matrix factorization, 

such as principal component analysis [7], gradient descent [8], 

and cluster analysis [9], offer a solution for investigating more 

complex mechanisms by analyzing average performances over 
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numerous repeated trials. Uncontrolled manifold (UCM) 

analysis method [10] evaluates the variability between trials in 

order to analyze synergies qualitatively. Though all these 

methods rely on extensive data analysis, which can often be 

difficult to interpret and conceptualize, they account for the 

complexities inherent in postural control, and can thus 

contribute to the understanding of how the CNS controls 

multiple muscles during complex movements. 

Our study presents a self-organizing maps (SOM) method 

for representing, comparing and modelling complex postural 

synergies at a glance. The SOM is an artificial neural network 

(ANN) that uses an unsupervised learning algorithm to project 

large input datasets onto a two-dimensional (2-D) 

representation known as a map [11]. The SOM produces an 

organized map in which similar patterns, discovered in the 

input data, are mapped onto nodes close to one another on the 

map. Thus the map becomes a projection of the input data and 

allows visualization of large datasets on a 2-D display, while 

maintaining their topological order [11]. Consequently, 

visualization of numerous EMG responses following 

perturbations results in a method for representing and 

comparing postural synergies at a glance. 

The SOM algorithm has been used as a robust method for 

classification of neuromuscular disorders based on EMG 

recordings [21] and for exploration of gait coordination based 

on locomotion kinematic data (see [15] for a review of other 

applications of SOM in biomechanics). To date, there have 

been limited applications of SOM for visualization of 

neuromuscular synergies in posturography. Moreover, postural 

muscle synergies represent a general construct used by the 

CNS [16] and may reveal insight into neural strategies used by 

healthy and impaired nervous systems [17]. The SOM presents 

topological relationships of high-dimensional, non-linear data 

visually, thus making it an attractive tool for analyzing 

postural muscle synergies. 

The objective of this study is to use the SOM method to 

represent and compare postural muscle synergies by producing 

a visualization of complex neuromuscular responses following 

perturbations. Furthermore, the objective is to produce 

response models of each muscle and compare the results 

obtained with the SOM analysis to the results obtained by 

Masani et al. [4] using curve fitting. Overall, the aim of this 

study was to demonstrate the use of SOM for visualization and 

comparison of neuromuscular synergies in posturography. The 

SOM analysis was expected to contribute to further 

understanding and aid the reverse engineering of the neural 

mechanisms responsible for sitting balance control, which 

relies on complex neuromuscular relationships [1]. 

II. METHODS 

The full experimental protocol is reported in our previous 

study [4], [5]. A brief description follows. 

A. Subjects 

This study included thirteen healthy male adults (ages: 21–

39 years; mean height: 178.0 (SD: 4.7) cm; mean body mass: 

70.3 (SD: 10.0) kg; and all except one were right-handed). 

Participants had no reported history of lower back problems. 

The experimental protocol was approved by the local ethics 

committee and all subjects gave written informed consent 

before participating. 

B. Experimental Protocol 

Subjects were seated in an upright position with legs 

unsupported, arms crossed over the chest, and eyes closed; 

subjects wore headphones to eliminate auditory cues. The 

experiment consisted of eight directional perturbations at the 

level of sternum, uniformly spaced at intervals of 45
o
 around 

the subject. Perturbations were applied via manual pulling 

using a chest harness. The applied perturbation forces were in 

the range from 131 to 148 N [4]. Five trials were taken for 

each of eight directions (total of 40 perturbations) for each 

subject. The perturbations were randomly ordered to prevent 

any anticipation, with approximately 30s between 

perturbations. 

C. Data Acquisition 

Surface EMG recordings were taken from ten muscle groups 

(five muscles recorded bilaterally) that were identified as 

relevant for posture and trunk stability. Ten disposable EMG 

electrodes (silver-silver chloride disposable electrodes, 10mm 

diameter) were placed bilaterally, 18mm apart, over the 

following muscles:  1) rectus abdominis (RA), 3cm lateral to 

the umbilicus; 2) external oblique (EO), 15cm lateral to the 

umbilicus; 3) internal oblique (IO), midpoint between the 

anterior superior iliac spine and the symphysis pubis; 4) 

thoracic erector spinae (T9), 5cm lateral to the T9 spinous 

process; and 5) lumbar erector spinae (L3), 3cm lateral to the 

L3 spinous process. A reference electrode was placed over the 

clavicle. 

Data were acquired using two AMT-8 EMG recording 

systems (Bortec Biomedical Ltd., Canada) with a pre-

amplification gain of 2,000 and a frequency response of 10-

1,000Hz. All data were sampled at 2,000 Hz using a 12-bit 

data acquisition system (NI6071E, National Instruments, 

USA). All recordings were rectified and low-pass filtered at 

2.5Hz using a 4
th

 order, zero-phase-lag Butterworth filter to 

compute the linear envelope of EMG signals [4], [18]. The 

phasic response was determined as the peak EMG value in the 

0.5s time window immediately following the perturbation [4]. 

Phasic responses of each muscle were selected as the features 

for analyzing postural synergies following perturbations. 

 
 

Fig. 1.  Self-organizing map method for data mining, visualization and 

model extraction of muscle synergies. 

Page 2 of 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Milosevic M.           Revision (R1) to ‘TBME-01419-2011’ – April 2012 

 

3

D. Self-Organizing Map (SOM) 

A SOM was used to represent and compare postural muscle 

synergies, and to model the responses of each muscle. The 

SOM analysis method represented in Figure 1 was 

implemented in Matlab 7 (MathWorks Inc., USA) using the 

SOM Toolbox for Matlab [19]. Acquired EMG signals were 

processed and the phasic muscle response feature was selected 

(see: Data Acquisition). The SOM algorithm had two phases: 

training phase and recall phase (visualization), which are 

shown in Figure 2. 

The input dataset consisting of trunk muscle phasic 

responses was encoded onto a 2-D map representation during 

SOM training. In the recall phase the resultant map allowed 

visualization of postural synergies for each of eight directional 

perturbations. Each direction was assigned a cluster on the 

map corresponding to where the responses of that direction 

converged. The organized map contained similar responses 

grouped close together. Comparison of the EMG response 

differences was done by analyzing the relative proximity of the 

clusters of each perturbation direction on the map. Clusters of 

perturbation directions that were close together had similar 

neuromuscular responses and clusters of perturbation 

directions that were far apart had dissimilar responses. Lastly, 

from the clusters associated with each direction, an averaged 

response for each muscle was extracted. A direction-dependent 

model of the responses for each muscle was then constructed 

using Gaussian curve-fitting, and compared to the results 

obtained using conventional EMG analysis. A detailed 

description follows. 

SOM Training 

During SOM training the input data is encoded onto a 2-D 

output layer known as the map. SOM uses an unsupervised 

learning algorithm where the output layer nodes compete to 

encode the input data. 

The input dataset contains a vector for each of eight 

perturbation directions for each participant (five trials were 

averaged for each participant) resulting in 104 input data 

vectors (13 participants x 8 directions). Each input vector 

contains ten points corresponding to the phasic responses of 

each analyzed muscle. The input vectors also contained a label 

with the corresponding direction of perturbation to allow 

comparisons of direction-dependent responses. The label was 

used only during the recall phase to shows where the clusters 

for each direction converged on the resultant map, and was not 

used during the training phase. The input data was 

logarithmically normalized before SOM training. Training was 

performed in batch mode, which provided quicker execution of 

the algorithm [11]. 

The output layer was defined as a 5x5 hexagonal map. In 

the output layer each node (indexed by j = 1,…, 25) is 

represented by a weight vector wj = [wj1, wj2,…, wj10]
T
 with the 

same dimensionality as the vectors from the input space (i.e., 

ten points). Weight vectors were initially randomly assigned 

and during the training they were tuned to represent the input 

data. 

During training, each iteration (indexed by n) proceeded by 

sampling a new input vector xn = [xn1, xn2,…, xn10]
T
 from the 

input data, that was matched against nodes in the output layer 

by calculating the Euclidian distance between a given input 

vector and each node on the map.  The algorithm then selected 

the node that was the best matching unit (BMU), indexed by c. 

The BMU was the node whose weight representation (wc) was 

closest to the given input vector as measured by the Euclidean 

distance (Equation 1). 

||)(||minarg jnj wxc −=        (1) 

The weight vector of the BMU node was then adapted toward 

the current input vector (Equation 2). 

)]([)()()1( nwxnhnwnw jncjjj −⋅+=+     (2) 

Neighbouring nodes were proportionally modified via the 

neighbourhood function attempting to distribute knowledge 

locally around the BMU. A Gaussian neighbourhood function, 

hcj(n), which was centred on the BMU node, controlled the 

region in the output layer over which training occurred; rc and 

rj are the position of the BMU node and an arbitrary node, j, 

on the map (Equation 3). 















 −−
=

2

2
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n
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The radius of the neighbourhood (σn), as well as the learning 

rate (αn), shrank monotonically as n increased. The algorithm 

 
 

Fig. 2.  Self-organizing map algorithm flowchart: a) Training and b) Recall 

phase. BMU is the best matching unit in a Euclidian sense (Equation 1). 
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sampled the input data randomly until the weight vectors 

converged to a stable projection of the input data [11], [19]. 

After SOM training, the map was encoded with the 

representation of the input data. 

 

SOM Visualization 

Visualization produced using the SOM–based method 

reduced dimensionality, yet maintained non-linear topological 

relationships [11]. Visualization was generated by 

superimposing a histogram of BMU hits for a particular 

dataset onto the nodes of the map, indicating BMU locations. 

The resultant map contained groupings of similar patterns that 

were discovered in the input data mapped onto spatially 

proximal nodes, consequently forming clusters of input data. 

Visualization of the hits histograms was produced for each 

perturbation direction (shown in Figure 3). Such a method of 

data representation enabled us to compare complex 

neuromuscular responses caused by different perturbations 

(i.e., direction-specific postural synergies). 

Visualization of all perturbation directions on a single map 

allowed rapid visual inspection of response differences. The 

arrows (shown in Figure 4a) represent the label indicating 

direction of perturbation with the highest BMU hits frequency 

(solid line), and other BMU hits (dotted line), appearing on 

each node. Clusters of responses for each direction were 

obtained by assigning each node a “winning” direction based 

on the highest frequency of BMU hits in that direction (Figure 

4). Relative proximity of clusters on the map implies similarity 

or dissimilarity of the overall weight vectors associated with 

those clusters. 

The Euclidian distance measure was calculated from the 

centre of each cluster to the centre of all other clusters on the 

map (Equation 4). The Euclidian distance between arbitrary 

clusters a(xa, ya) and b(xb, yb) is: 

22 )()( bababa yyxxd −+−=−
     (4) 

The average Euclidian distance shows the proximity between 

clusters, which infers similarity or dissimilarity of direction-

dependent postural synergies. 

 

Model Extraction 

Models of neuromuscular responses were constructed from 

weight vector representations of the convergent clusters on the 

map.  Each cluster contained several nodes and weight vector 

responses that corresponded to each perturbation direction. 

Average responses for each cluster were calculated to produce 

one overall response vector for each perturbation direction. 

The resulting weight vector for each direction (wd, for d=1-8), 

contained ten points representing the average phasic 

neuromuscular response of each muscle group. Gaussian 

curve-fitting was used to build a continuous-direction model 

for each muscle. Each muscle response was analyzed with 

respect to the perturbation direction to extract direction-

dependent models: the relationship between perturbation angle 

(x) and the EMG response (y), for each muscle, was described 

by a Gaussian function (Equation 5), where a, b, and c are the 

model coefficients: 








 −−
⋅=

2

2)(
exp

c

bx
ay         (5) 

III. RESULTS 

A. Postural Synergy Visualization 

Postural synergy representations for each direction were 

obtained and projected onto the SOM to produce visualization. 

Visualization based on BMU hits distribution shows the 

concentration of clusters for each perturbation direction 

(Figure 3). The relative concentration of clusters on the map 

infers similarities (i.e., clusters closer together) and 

dissimilarities (i.e., clusters further apart) between direction-

dependent postural responses. The same visualization also 

shows that perturbations to the front and back, as well as the 

right and left (directions 1 and 5, and 3 and 7, respectively), 

have symmetrical cluster locations relative to each other 

(Figure 3). Although the absolute position of the clusters on 

the grid was arbitrary, cluster symmetry indicates that 

neuromuscular responses were dissimilar and opposite for 

opposing perturbation directions, and that the muscular 

reactions for front vs. back and right vs. left directions 

represented the most dissimilar and opposite postural 

synergies. 

Visualizing the directions for which each node was active 

on a single SOM map using direction-indicating arrows 

allowed a comparison of postural synergies between 

perturbation directions (Figure 4). It is possible for more than 

one direction to appear in the same node (represented as 

multiple arrow directions on a single node - Figure 4a), 

 
 

Fig. 3.  SOM map visualization of postural synergy response for each 

perturbation direction. The plots show average responses for all subjects for 

each direction. The analysis represents postural synergies and compares the 

direction-dependent differences of perturbations by comparing the relative 

cluster locations. 
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indicating similarity of muscle responses for those directions. 

Each node could also be assigned to a particular cluster 

(grouped based on the “winning” direction of individual nodes 

- Figure 4b) and projected on a single SOM map illustrating 

each of the eight perturbation directions clusters. Adjacent 

perturbation intervals are represented by clusters that were 

closest on the map (i.e., perturbation direction 5 appears 

between directions 4 and 6 - Figure 4b), indicating the most 

similar responses between these directions. In addition to 

similar input data converging to proximal clusters on the map, 

the size of the clusters is proportional to the size of data 

corresponding to those clusters [20]. Analysis of SOM cluster 

size (variability) was found to be valid for variability analysis 

[13]. Our analyses of the SOM map (Figure 3) and the relative 

cluster size (Figure 4) indicate that if the cluster size is 

smaller, there is less data associated with that cluster (i.e., 

perturbation direction) [20] hence suggesting smaller 

variability of neuromuscular responses associated with that 

perturbation direction. The results suggest that neuromuscular 

responses to directions 1 and 5 (i.e., anterior-posterior 

directions) are less variable (average cluster size = 2) than 

other perturbations directions (average cluster size = 3.5). 

The Euclidian distance measured between the central 

locations of two clusters on the map represents similarity (i.e., 

small Euclidian distance) or dissimilarity (i.e., large Euclidian 

distance) of synergistic postural responses associated with 

those two clusters. Each perturbation direction is presented on 

the polar plot (Figure 5) showing similarities and 

dissimilarities of that perturbation to all other perturbation 

directions. As expected, the synergistic responses of each 

direction were most similar to the responses of those directions 

adjacent to it and got progressively more dissimilar as 

perturbations change. The responses were most dissimilar from 

the perturbations in the opposite direction to it. This analysis 

compared synergistic difference between direction-dependent 

postural responses using the SOM method. 

 

B. Direction-dependent Models 

Gaussian regression models (Equation 5), for each muscle, 

were computed by extracting and analyzing the average 

response vector (wd), for each direction (d=1-8). Each 

direction vector contained 10 points representing the average 

phasic neuromuscular responses of each corresponding 

muscle. The direction-dependent model for each muscle was 

computed to compare the results to previous studies, which 

used different approaches to analyze direction-dependent 

neuromuscular responses during sitting. The coefficient of 

determination (R
2
) was used to assess the goodness of fit of 

each muscle model to be represented by the Gaussian function 

and the results obtained using the SOM method are presented 

in Table 1. The R
2
 values from Masani et al. [4] are used for 

evaluation of the results obtained by SOM. 

In Figure 6 the perturbation directions were converted from 

directions 1-8 into angles, where: 1=0
o
/360

o
, 2=45

o
, 3=90

o
, 

4=135
o
, 5=180

o
, 6=225

o
, 7=270

o
, and 8=315

o
. The responses 

were sub-divided anatomically to abdominal and back muscle 

groups. The abdominal muscles (RA, EO and IO) responses 

yielded a good fit suggesting that the relationship could be 

represented using a Gaussian function. The back muscles (T9 

 
 

Fig. 4. SOM map visualization of mean cluster responses for all perturbation 

directions. a) Directions of arrows on each node indicate perturbation 

directions 1-8; solid arrows represent the “winning” direction with the 

highest responses; dotted arrows represent all other directions with lesser 

responses on each node. b) Each cluster is colour-coded and labeled with the 

associated direction number and the corresponding direction-indicating 

arrow. 

 
Fig. 5.  Polar plots showing the Euclidian distances between clusters on the map. Distances between clusters imply neuromuscular differences between the 

corresponding clusters. Clusters of each perturbation direction are compared to all other perturbations to show the similarities and dissimilarities of direction

dependent neuromuscular responses. 
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and L3) responses provided an acceptable fit using normal 

distribution, suggesting a tendency that the relationship fits a 

Gaussian function, with the exception of right L3. The models 

obtained using the SOM method suggests that the amplitude of 

phasic response to direction of perturbation relationship during 

sitting may be quantitatively modelled using the Gaussian 

function. This finding confirms those of Masani et al. [4] and 

Preuss and Fung [21], who used standard analysis methods to 

quantify the relationship. 

 

Coefficient ‘b’ in Table 1 indicates where each muscle 

model had a maximal response. The abdominal muscles had 

maximal responses around 180
o
 (back perturbation direction) 

suggesting that opposing muscles stabilized the perturbations.  

The maximal responses of back muscles were around 0
o
 (front 

perturbation direction), suggesting the opposing muscles also 

stabilized the perturbation. The anatomy of the back muscles, 

both of which are located around the spinal column, is 

consistent with the location of the peak responses. 

IV. DISCUSSIONS 

The purpose of this study was to present and demonstrate an 

SOM-based method for representing, comparing and 

modelling of trunk muscle postural synergies following 

direction-dependent perturbations during sitting. We used the 

SOM to project and represent the direction-dependent phasic 

responses of ten muscles on a 2-D map. Furthermore, the SOM 

method produced an organized visualization, where similar 

patterns were mapped close together, therefore allowing 

comparisons of the neuromuscular responses following eight-

directional perturbations. Finally, we produced direction-

dependent models for each of the ten muscles that were 

acquired using the SOM method. 

A. Direction-dependent Neuromuscular Responses 

 The results obtained by visualizations produced using 

SOM-based analysis provide important insights and allow 

quick comparisons of the neuromuscular system relevant to 

studies of complex mechanisms of sitting balance [1]. Using 

the SOM visualization cluster position analysis (Figure 5) we 

have quantified direction-dependent differences of trunk 

muscle phasic responses during sitting, which are necessary to 

stabilize the trunk [4]. Our study found symmetrical and 

direction-dependent neuromuscular responses which are 

consistent with findings from the literature [4], [5]. In our 

study activation patterns for each muscle obtained from the 

SOM clusters were modelled using the Gaussian distribution 

(Figure 6 and Table 1) and demonstrate maximum EMG 

response in the anatomically opposite direction to the 

perturbation. The results indicate that opposing muscular 

reactions stabilize the body by stiffening the muscles that 

would provide the forces in the opposite direction to the 

perturbation. These results complement previous findings 

demonstrating the role of direction-dependent abdominal 

muscle responses that can be modelled using Gaussian 

distribution [4], [21]. Although our R
2
 coefficients are not as 

high, the difference could also be attributed to the maximal 

voluntary contraction normalization by Masani et al. [4]. 

Moreover, the anatomy of back muscles (T9 and L3) extends 

vertically along the sagittal plane of the spine, whereas the 

abdominal muscles (RA, EO and IO) extend along the sagittal 

and transverse planes of the trunk. This musculoskeletal 

geometry could explain why the back muscles exhibit less 

direction-dependent responses (i.e., have a more active role in 

stabilizing all perturbation directions), whereas abdominal 

muscles have more direction-dependency. These results are 

TABLE I 

RESULTS OF GAUSSIAN CURVE-FITTING FOR EACH MUSCLE 

 

Muscle 

 a b c R2 R2  

Masani  

et al. [4] 

Rectus  

Abdominis (RA) 

L 2.029 165.2 105.7 0.954 0.990 

R 2.350 178.0 101.2 0.967 0.988 

External  

Oblique  (EO) 

L 2.636 156.2 133.1 0.978 0.977 

R 2.710 177.2 139.7 0.952 0.965 

Internal  

Oblique (IO) 

L 2.579 134.9 146.5 0.972 0.845 

R 2.210 221.9 193.6 0.728 0.953 

Thoracic Erector 

Spinae (T9) 

L 1.801 28.4 219.3 0.793 0.944 

R 2.533 341.4 316.9 0.886 0.924 

Lumbar Erector 

Spinae (L3) 

L 2.407 3.3 322.0 0.764 N/A 

R 4.141 348.7 878.7 0.415 0.969 

 

Muscles are recorded bilaterally: left (L) and right (R); a, b, c are the 

coefficients of Equation 5; and R2 is the coefficient of determination which 

is compared to R2 obtained by Masani et al. [4]. 

 
 

Fig. 6. Activation pattern for different directions of perturbation for left 

(thick line) and right (thin line) muscle group for all subjects. Abdominal 

muscles: rectus abdominis (RA), external oblique (EO), and internal oblique 

(IO); Back muscles: thoracic erector spinae (T9), lumbar erector spinae (L3). 
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consistent with the notion that the CNS may be tuning the 

activation level based on the musculoskeletal geometry [22]. 

Furthermore, analysis of variability based on the size of 

SOM clusters [20] (Figures 3 and 4) and direction-indicating 

arrows (Figure 4a) offer some insights into the variability of 

neuromuscular responses during sitting. Our results suggest 

that the responses to anterior-posterior perturbations (i.e., 

forward and backward perturbations) are less variable than 

other perturbation responses, which include the medio-lateral 

component. Variability of postural synergies is a result of 

neuromuscular redundancy [16] (i.e., the same movement can 

be executed by a variety of muscular patterns [1]) and does not 

necessarily reflect dysfunction [17]. Inter-trial variations of 

individual muscles are known to be correlated, thus 

representing a general construct used by the CNS, and this 

variability may represent variations of neural commands that 

activate individual muscle synergies [16]. The smaller 

variability of neuromuscular responses in the anterior-posterior 

directions could be explained by the anatomy of the trunk 

muscles [23], which provides a greater mechanical advantage 

to resist perturbations in the anterior-posterior direction. 

B. Muscle Synergy Visualization with SOM 

The main advantage of SOM is the ability to represent the 

results pictorially [12]. An intuitive topological visualization 

of muscle synergies could aid clinicians in discriminating 

pathology, assessment of rehabilitation and creating evidence-

based interventions [17], by comparing responses of 

individuals (for example with spinal cord injury) to established 

norms. Visualization of direction-dependent responses could 

also be used to assess symmetry of muscular responses of 

patients (with stroke, for example) or for biofeedback training. 

Furthermore, the capability of the SOM algorithm to encode 

redundancies in data [13], [20] and relative ease of 

interpretation [11]-[14], which have been cited as a limiting 

factor for clinical muscle synergy analysis [17], is another 

benefit of SOM over other muscle synergy extraction methods 

[6]-[10]. Foremost, the unsupervised, self-organizing structure 

of the SOM is an important feature of the SOM algorithm [20]. 

SOM generates classes of data automatically, consequently 

allowing discovery of subcategories of data, and making it 

suitable for exploratory analysis [11], [12], [14] or discovery 

of new patterns, perhaps justifying poorer goodness of fit 

obtained for the back muscles, and suggest that these muscles 

exhibit more uniform direction-dependent responses and 

should be modelled accordingly. 

V. CONCLUSIONS 

This study demonstrated the SOM-based analysis of 

postural synergies of trunk muscles during direction-dependent 

perturbed sitting. Complex neuromuscular synergies were 

visualized and compared by encoding large EMG datasets on a 

single map and quantitative models of each muscle were 

produced. The results obtained using SOM analysis are 

consistent with findings obtained by Masani et al. [4] and other 

studies [5], [21] therefore adding to the validity of the SOM 

visualization of postural synergies. Although computational 

methods and SOM analysis have not yet demonstrated their 

full potential [20], [24], the presented method was capable of 

encoding, qualitatively comparing and assessing variability of 

direction-dependent postural muscle synergies during sitting 

perturbations. The SOM-based analysis has revealed insights 

into mechanisms of trunk muscles during sitting perturbations, 

and can be used as a reverse engineering method for 

visualization of complex neuromuscular systems at a glance. 

The benefit of SOM-based analysis is the visualization, which 

has produced a way for summarizing and comparing postural 

synergies, despite of their complexity. Future applications will 

concentrate on encoding larger input sets with temporal 

information, including a larger selection of muscles, as well as 

a range of perturbation magnitudes. Comparisons to patient 

data and individual responses could provide a postural synergy 

classification method which can be clinically significant for 

trunk assessment and rehabilitation. 
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